Metamath Proof Explorer


Theorem eq0ALT

Description: Alternate proof of eq0 . Shorter, but requiring df-clel , ax-8 . (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eq0ALT ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 dfcleq ( 𝐴 = ∅ ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ∅ ) )
2 noel ¬ 𝑥 ∈ ∅
3 2 nbn ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴𝑥 ∈ ∅ ) )
4 3 albii ( ∀ 𝑥 ¬ 𝑥𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ∅ ) )
5 1 4 bitr4i ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )