Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by BJ, 15-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eq0f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | eq0f | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eq0f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 ∅ | |
| 3 | 1 2 | cleqf | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅ ) ) | 
| 4 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 5 | 4 | nbn | ⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅ ) ) | 
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅ ) ) | 
| 7 | 3 6 | bitr4i | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |