Metamath Proof Explorer


Theorem eq0f

Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of Suppes p. 22. (Contributed by BJ, 15-Jul-2021)

Ref Expression
Hypothesis eq0f.1 𝑥 𝐴
Assertion eq0f ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 eq0f.1 𝑥 𝐴
2 nfcv 𝑥
3 1 2 cleqf ( 𝐴 = ∅ ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ∅ ) )
4 noel ¬ 𝑥 ∈ ∅
5 4 nbn ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴𝑥 ∈ ∅ ) )
6 5 albii ( ∀ 𝑥 ¬ 𝑥𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ∅ ) )
7 3 6 bitr4i ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )