Metamath Proof Explorer


Theorem eq0rdv

Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)

Ref Expression
Hypothesis eq0rdv.1 ( 𝜑 → ¬ 𝑥𝐴 )
Assertion eq0rdv ( 𝜑𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 eq0rdv.1 ( 𝜑 → ¬ 𝑥𝐴 )
2 1 alrimiv ( 𝜑 → ∀ 𝑥 ¬ 𝑥𝐴 )
3 biidd ( 𝑦 = 𝑥 → ( ⊥ ↔ ⊥ ) )
4 3 eqabbw ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ⊥ ) )
5 dfnul4 ∅ = { 𝑦 ∣ ⊥ }
6 5 eqeq2i ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } )
7 nbfal ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴 ↔ ⊥ ) )
8 7 albii ( ∀ 𝑥 ¬ 𝑥𝐴 ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ⊥ ) )
9 4 6 8 3bitr4ri ( ∀ 𝑥 ¬ 𝑥𝐴𝐴 = ∅ )
10 2 9 sylib ( 𝜑𝐴 = ∅ )