Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eq0rdv.1 | ⊢ ( 𝜑 → ¬ 𝑥 ∈ 𝐴 ) | |
| Assertion | eq0rdv | ⊢ ( 𝜑 → 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdv.1 | ⊢ ( 𝜑 → ¬ 𝑥 ∈ 𝐴 ) | |
| 2 | 1 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| 3 | biidd | ⊢ ( 𝑦 = 𝑥 → ( ⊥ ↔ ⊥ ) ) | |
| 4 | 3 | eqabbw | ⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
| 5 | dfnul4 | ⊢ ∅ = { 𝑦 ∣ ⊥ } | |
| 6 | 5 | eqeq2i | ⊢ ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } ) |
| 7 | nbfal | ⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) | |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
| 9 | 4 6 8 | 3bitr4ri | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅ ) |
| 10 | 2 9 | sylib | ⊢ ( 𝜑 → 𝐴 = ∅ ) |