Step |
Hyp |
Ref |
Expression |
1 |
|
eq0rdv.1 |
⊢ ( 𝜑 → ¬ 𝑥 ∈ 𝐴 ) |
2 |
1
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
3 |
|
dfnul4 |
⊢ ∅ = { 𝑦 ∣ ⊥ } |
4 |
3
|
eqeq2i |
⊢ ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } ) |
5 |
|
dfcleq |
⊢ ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ) |
6 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ ) |
7 |
|
sbv |
⊢ ( [ 𝑥 / 𝑦 ] ⊥ ↔ ⊥ ) |
8 |
6 7
|
bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ ⊥ ) |
9 |
8
|
bibi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
11 |
|
nbfal |
⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ) |
12 |
11
|
bicomi |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ↔ ¬ 𝑥 ∈ 𝐴 ) |
13 |
12
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ⊥ ) ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
14 |
10 13
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
15 |
4 5 14
|
3bitrri |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ 𝐴 = ∅ ) |
16 |
2 15
|
sylib |
⊢ ( 𝜑 → 𝐴 = ∅ ) |