Metamath Proof Explorer


Theorem eq0rdv

Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Hypothesis eq0rdv.1 ( 𝜑 → ¬ 𝑥𝐴 )
Assertion eq0rdv ( 𝜑𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 eq0rdv.1 ( 𝜑 → ¬ 𝑥𝐴 )
2 1 alrimiv ( 𝜑 → ∀ 𝑥 ¬ 𝑥𝐴 )
3 dfnul4 ∅ = { 𝑦 ∣ ⊥ }
4 3 eqeq2i ( 𝐴 = ∅ ↔ 𝐴 = { 𝑦 ∣ ⊥ } )
5 dfcleq ( 𝐴 = { 𝑦 ∣ ⊥ } ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) )
6 df-clab ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ )
7 sbv ( [ 𝑥 / 𝑦 ] ⊥ ↔ ⊥ )
8 6 7 bitri ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ ⊥ )
9 8 bibi2i ( ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ( 𝑥𝐴 ↔ ⊥ ) )
10 9 albii ( ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ∀ 𝑥 ( 𝑥𝐴 ↔ ⊥ ) )
11 nbfal ( ¬ 𝑥𝐴 ↔ ( 𝑥𝐴 ↔ ⊥ ) )
12 11 bicomi ( ( 𝑥𝐴 ↔ ⊥ ) ↔ ¬ 𝑥𝐴 )
13 12 albii ( ∀ 𝑥 ( 𝑥𝐴 ↔ ⊥ ) ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
14 10 13 bitri ( ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ { 𝑦 ∣ ⊥ } ) ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
15 4 5 14 3bitrri ( ∀ 𝑥 ¬ 𝑥𝐴𝐴 = ∅ )
16 2 15 sylib ( 𝜑𝐴 = ∅ )