Metamath Proof Explorer


Theorem eq0rdvALT

Description: Alternate proof of eq0rdv . Shorter, but requiring df-clel , ax-8 . (Contributed by NM, 11-Jul-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis eq0rdvALT.1 ( 𝜑 → ¬ 𝑥𝐴 )
Assertion eq0rdvALT ( 𝜑𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 eq0rdvALT.1 ( 𝜑 → ¬ 𝑥𝐴 )
2 1 pm2.21d ( 𝜑 → ( 𝑥𝐴𝑥 ∈ ∅ ) )
3 2 ssrdv ( 𝜑𝐴 ⊆ ∅ )
4 ss0 ( 𝐴 ⊆ ∅ → 𝐴 = ∅ )
5 3 4 syl ( 𝜑𝐴 = ∅ )