Metamath Proof Explorer
		
		
		
		Description:  One direction of eqabb is provable from fewer axioms.  (Contributed by Wolf Lammen, 13-Feb-2025)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | eqab | ⊢  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  ↔  𝜑 )  →  𝐴  =  { 𝑥  ∣  𝜑 } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abid1 | ⊢ 𝐴  =  { 𝑥  ∣  𝑥  ∈  𝐴 } | 
						
							| 2 |  | abbi | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  ↔  𝜑 )  →  { 𝑥  ∣  𝑥  ∈  𝐴 }  =  { 𝑥  ∣  𝜑 } ) | 
						
							| 3 | 1 2 | eqtrid | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  ↔  𝜑 )  →  𝐴  =  { 𝑥  ∣  𝜑 } ) |