Description: Version of eqabb using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabbw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | eqabbw | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabbw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | dfcleq | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
| 3 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | 1 | sbievw | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 5 | 3 4 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
| 6 | 5 | bibi2i | ⊢ ( ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |
| 8 | 2 7 | bitri | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |