Description: Version of eqabcb using implicit substitution, which requires fewer axioms. (Contributed by TM, 24-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabbw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | eqabcbw | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ ∀ 𝑦 ( 𝜓 ↔ 𝑦 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabbw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | eqabbw | ⊢ ( 𝐴 = { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |
| 3 | eqcom | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ 𝐴 = { 𝑥 ∣ 𝜑 } ) | |
| 4 | bicom | ⊢ ( ( 𝜓 ↔ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) | |
| 5 | 4 | albii | ⊢ ( ∀ 𝑦 ( 𝜓 ↔ 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝜓 ) ) |
| 6 | 2 3 5 | 3bitr4i | ⊢ ( { 𝑥 ∣ 𝜑 } = 𝐴 ↔ ∀ 𝑦 ( 𝜓 ↔ 𝑦 ∈ 𝐴 ) ) |