Metamath Proof Explorer


Theorem eqabcbw

Description: Version of eqabcb using implicit substitution, which requires fewer axioms. (Contributed by TM, 24-Jan-2026)

Ref Expression
Hypothesis eqabbw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion eqabcbw ( { 𝑥𝜑 } = 𝐴 ↔ ∀ 𝑦 ( 𝜓𝑦𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqabbw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 1 eqabbw ( 𝐴 = { 𝑥𝜑 } ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
3 eqcom ( { 𝑥𝜑 } = 𝐴𝐴 = { 𝑥𝜑 } )
4 bicom ( ( 𝜓𝑦𝐴 ) ↔ ( 𝑦𝐴𝜓 ) )
5 4 albii ( ∀ 𝑦 ( 𝜓𝑦𝐴 ) ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
6 2 3 5 3bitr4i ( { 𝑥𝜑 } = 𝐴 ↔ ∀ 𝑦 ( 𝜓𝑦𝐴 ) )