Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabdv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) | |
| Assertion | eqabdv | ⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabdv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) | |
| 2 | 1 | sbbidv | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 3 | clelsb1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) | |
| 4 | 3 | bicomi | ⊢ ( 𝑦 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ) |
| 5 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 6 | 2 4 5 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 7 | 6 | eqrdv | ⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) |