Metamath Proof Explorer


Theorem eqbrb

Description: Substitution of equal classes in a binary relation. (Contributed by Peter Mazsa, 14-Jun-2024)

Ref Expression
Assertion eqbrb ( ( 𝐴 = 𝐵𝐴 𝑅 𝐶 ) ↔ ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐵 = 𝐴𝐴 𝑅 𝐶 ) → 𝐵 = 𝐴 )
2 eqbrtr ( ( 𝐵 = 𝐴𝐴 𝑅 𝐶 ) → 𝐵 𝑅 𝐶 )
3 1 2 jca ( ( 𝐵 = 𝐴𝐴 𝑅 𝐶 ) → ( 𝐵 = 𝐴𝐵 𝑅 𝐶 ) )
4 eqcom ( 𝐵 = 𝐴𝐴 = 𝐵 )
5 4 anbi1i ( ( 𝐵 = 𝐴𝐴 𝑅 𝐶 ) ↔ ( 𝐴 = 𝐵𝐴 𝑅 𝐶 ) )
6 4 anbi1i ( ( 𝐵 = 𝐴𝐵 𝑅 𝐶 ) ↔ ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) )
7 3 5 6 3imtr3i ( ( 𝐴 = 𝐵𝐴 𝑅 𝐶 ) → ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) )
8 simpl ( ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) → 𝐴 = 𝐵 )
9 eqbrtr ( ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 )
10 8 9 jca ( ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) → ( 𝐴 = 𝐵𝐴 𝑅 𝐶 ) )
11 7 10 impbii ( ( 𝐴 = 𝐵𝐴 𝑅 𝐶 ) ↔ ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) )