Metamath Proof Explorer


Theorem eqbrrdiv

Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypotheses eqbrrdiv.1 Rel 𝐴
eqbrrdiv.2 Rel 𝐵
eqbrrdiv.3 ( 𝜑 → ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) )
Assertion eqbrrdiv ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqbrrdiv.1 Rel 𝐴
2 eqbrrdiv.2 Rel 𝐵
3 eqbrrdiv.3 ( 𝜑 → ( 𝑥 𝐴 𝑦𝑥 𝐵 𝑦 ) )
4 df-br ( 𝑥 𝐴 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 )
5 df-br ( 𝑥 𝐵 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 )
6 3 4 5 3bitr3g ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
7 1 2 6 eqrelrdv ( 𝜑𝐴 = 𝐵 )