Description: Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqbrrdiv.1 | ⊢ Rel 𝐴 | |
eqbrrdiv.2 | ⊢ Rel 𝐵 | ||
eqbrrdiv.3 | ⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | ||
Assertion | eqbrrdiv | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrrdiv.1 | ⊢ Rel 𝐴 | |
2 | eqbrrdiv.2 | ⊢ Rel 𝐵 | |
3 | eqbrrdiv.3 | ⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | |
4 | df-br | ⊢ ( 𝑥 𝐴 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) | |
5 | df-br | ⊢ ( 𝑥 𝐵 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
6 | 3 4 5 | 3bitr3g | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
7 | 1 2 6 | eqrelrdv | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |