Step |
Hyp |
Ref |
Expression |
1 |
|
eqbrrdva.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐶 × 𝐷 ) ) |
2 |
|
eqbrrdva.2 |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐶 × 𝐷 ) ) |
3 |
|
eqbrrdva.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) |
4 |
|
xpss |
⊢ ( 𝐶 × 𝐷 ) ⊆ ( V × V ) |
5 |
1 4
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( V × V ) ) |
6 |
|
df-rel |
⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) |
7 |
5 6
|
sylibr |
⊢ ( 𝜑 → Rel 𝐴 ) |
8 |
2 4
|
sstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( V × V ) ) |
9 |
|
df-rel |
⊢ ( Rel 𝐵 ↔ 𝐵 ⊆ ( V × V ) ) |
10 |
8 9
|
sylibr |
⊢ ( 𝜑 → Rel 𝐵 ) |
11 |
1
|
ssbrd |
⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 → 𝑥 ( 𝐶 × 𝐷 ) 𝑦 ) ) |
12 |
|
brxp |
⊢ ( 𝑥 ( 𝐶 × 𝐷 ) 𝑦 ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) |
13 |
11 12
|
syl6ib |
⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 → ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
14 |
2
|
ssbrd |
⊢ ( 𝜑 → ( 𝑥 𝐵 𝑦 → 𝑥 ( 𝐶 × 𝐷 ) 𝑦 ) ) |
15 |
14 12
|
syl6ib |
⊢ ( 𝜑 → ( 𝑥 𝐵 𝑦 → ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
16 |
3
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) ) |
17 |
13 15 16
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) |
18 |
7 10 17
|
eqbrrdv |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |