| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqbrrdva.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐶  ×  𝐷 ) ) | 
						
							| 2 |  | eqbrrdva.2 | ⊢ ( 𝜑  →  𝐵  ⊆  ( 𝐶  ×  𝐷 ) ) | 
						
							| 3 |  | eqbrrdva.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  →  ( 𝑥 𝐴 𝑦  ↔  𝑥 𝐵 𝑦 ) ) | 
						
							| 4 |  | xpss | ⊢ ( 𝐶  ×  𝐷 )  ⊆  ( V  ×  V ) | 
						
							| 5 | 1 4 | sstrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( V  ×  V ) ) | 
						
							| 6 |  | df-rel | ⊢ ( Rel  𝐴  ↔  𝐴  ⊆  ( V  ×  V ) ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( 𝜑  →  Rel  𝐴 ) | 
						
							| 8 | 2 4 | sstrdi | ⊢ ( 𝜑  →  𝐵  ⊆  ( V  ×  V ) ) | 
						
							| 9 |  | df-rel | ⊢ ( Rel  𝐵  ↔  𝐵  ⊆  ( V  ×  V ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( 𝜑  →  Rel  𝐵 ) | 
						
							| 11 | 1 | ssbrd | ⊢ ( 𝜑  →  ( 𝑥 𝐴 𝑦  →  𝑥 ( 𝐶  ×  𝐷 ) 𝑦 ) ) | 
						
							| 12 |  | brxp | ⊢ ( 𝑥 ( 𝐶  ×  𝐷 ) 𝑦  ↔  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) ) | 
						
							| 13 | 11 12 | imbitrdi | ⊢ ( 𝜑  →  ( 𝑥 𝐴 𝑦  →  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) ) ) | 
						
							| 14 | 2 | ssbrd | ⊢ ( 𝜑  →  ( 𝑥 𝐵 𝑦  →  𝑥 ( 𝐶  ×  𝐷 ) 𝑦 ) ) | 
						
							| 15 | 14 12 | imbitrdi | ⊢ ( 𝜑  →  ( 𝑥 𝐵 𝑦  →  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) ) ) | 
						
							| 16 | 3 | 3expib | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  →  ( 𝑥 𝐴 𝑦  ↔  𝑥 𝐵 𝑦 ) ) ) | 
						
							| 17 | 13 15 16 | pm5.21ndd | ⊢ ( 𝜑  →  ( 𝑥 𝐴 𝑦  ↔  𝑥 𝐵 𝑦 ) ) | 
						
							| 18 | 7 10 17 | eqbrrdv | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |