Metamath Proof Explorer


Theorem eqbrtr

Description: Substitution of equal classes in binary relation. (Contributed by Peter Mazsa, 14-Jun-2024)

Ref Expression
Assertion eqbrtr ( ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝐴 = 𝐵 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐶 ) )
2 1 biimpar ( ( 𝐴 = 𝐵𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 )