Metamath Proof Explorer


Theorem eqbrtrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999)

Ref Expression
Hypotheses eqbrtrdi.1 ( 𝜑𝐴 = 𝐵 )
eqbrtrdi.2 𝐵 𝑅 𝐶
Assertion eqbrtrdi ( 𝜑𝐴 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 eqbrtrdi.1 ( 𝜑𝐴 = 𝐵 )
2 eqbrtrdi.2 𝐵 𝑅 𝐶
3 1 breq1d ( 𝜑 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐶 ) )
4 2 3 mpbiri ( 𝜑𝐴 𝑅 𝐶 )