Metamath Proof Explorer


Theorem eqbrtrrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqbrtrrdi.1 ( 𝜑𝐵 = 𝐴 )
eqbrtrrdi.2 𝐵 𝑅 𝐶
Assertion eqbrtrrdi ( 𝜑𝐴 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 eqbrtrrdi.1 ( 𝜑𝐵 = 𝐴 )
2 eqbrtrrdi.2 𝐵 𝑅 𝐶
3 1 eqcomd ( 𝜑𝐴 = 𝐵 )
4 3 2 eqbrtrdi ( 𝜑𝐴 𝑅 𝐶 )