Metamath Proof Explorer


Theorem eqbrtrri

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypotheses eqbrtrr.1 𝐴 = 𝐵
eqbrtrr.2 𝐴 𝑅 𝐶
Assertion eqbrtrri 𝐵 𝑅 𝐶

Proof

Step Hyp Ref Expression
1 eqbrtrr.1 𝐴 = 𝐵
2 eqbrtrr.2 𝐴 𝑅 𝐶
3 1 eqcomi 𝐵 = 𝐴
4 3 2 eqbrtri 𝐵 𝑅 𝐶