| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcoe1ply1eq.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | eqcoe1ply1eq.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | eqcoe1ply1eq.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐾 ) | 
						
							| 4 |  | eqcoe1ply1eq.c | ⊢ 𝐶  =  ( coe1 ‘ 𝐿 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐶 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑛 ) ) | 
						
							| 7 | 5 6 | eqeq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 )  ↔  ( 𝐴 ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑛 ) ) ) | 
						
							| 8 | 7 | rspccv | ⊢ ( ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 )  →  ( 𝑛  ∈  ℕ0  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑛 ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) )  →  ( 𝑛  ∈  ℕ0  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑛 ) ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑛 ) ) | 
						
							| 11 | 3 | fveq1i | ⊢ ( 𝐴 ‘ 𝑛 )  =  ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) | 
						
							| 12 | 4 | fveq1i | ⊢ ( 𝐶 ‘ 𝑛 )  =  ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) | 
						
							| 13 | 10 11 12 | 3eqtr3g | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  =  ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 15 | 14 | mpteq2dva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 ) | 
						
							| 18 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 19 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 20 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 21 |  | eqid | ⊢ ( coe1 ‘ 𝐾 )  =  ( coe1 ‘ 𝐾 ) | 
						
							| 22 | 1 17 2 18 19 20 21 | ply1coe | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵 )  →  𝐾  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 23 | 22 | 3adant3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  𝐾  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( coe1 ‘ 𝐿 )  =  ( coe1 ‘ 𝐿 ) | 
						
							| 25 | 1 17 2 18 19 20 24 | ply1coe | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐿  ∈  𝐵 )  →  𝐿  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 26 | 25 | 3adant2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  𝐿  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 27 | 23 26 | eqeq12d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ( 𝐾  =  𝐿  ↔  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) )  →  ( 𝐾  =  𝐿  ↔  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) | 
						
							| 29 | 16 28 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 ) )  →  𝐾  =  𝐿 ) | 
						
							| 30 | 29 | ex | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ( ∀ 𝑘  ∈  ℕ0 ( 𝐴 ‘ 𝑘 )  =  ( 𝐶 ‘ 𝑘 )  →  𝐾  =  𝐿 ) ) |