Step |
Hyp |
Ref |
Expression |
1 |
|
eqcoe1ply1eq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
eqcoe1ply1eq.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
eqcoe1ply1eq.a |
⊢ 𝐴 = ( coe1 ‘ 𝐾 ) |
4 |
|
eqcoe1ply1eq.c |
⊢ 𝐶 = ( coe1 ‘ 𝐿 ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑛 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐶 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑛 ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ↔ ( 𝐴 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) ) |
8 |
7
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) → ( 𝑛 ∈ ℕ0 → ( 𝐴 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → ( 𝑛 ∈ ℕ0 → ( 𝐴 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) ) |
10 |
9
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
11 |
3
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑛 ) = ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) |
12 |
4
|
fveq1i |
⊢ ( 𝐶 ‘ 𝑛 ) = ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) |
13 |
10 11 12
|
3eqtr3g |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) = ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ) |
14 |
13
|
oveq1d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
15 |
14
|
mpteq2dva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
16 |
15
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
17 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
19 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
20 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
21 |
|
eqid |
⊢ ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐾 ) |
22 |
1 17 2 18 19 20 21
|
ply1coe |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
24 |
|
eqid |
⊢ ( coe1 ‘ 𝐿 ) = ( coe1 ‘ 𝐿 ) |
25 |
1 17 2 18 19 20 24
|
ply1coe |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐵 ) → 𝐿 = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝐿 = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
27 |
23 26
|
eqeq12d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝐾 = 𝐿 ↔ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → ( 𝐾 = 𝐿 ↔ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
29 |
16 28
|
mpbird |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → 𝐾 = 𝐿 ) |
30 |
29
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) → 𝐾 = 𝐿 ) ) |