Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqeefv | ⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleei | ⊢ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ) | |
| 2 | 1 | ffnd | ⊢ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐴 Fn ( 1 ... 𝑁 ) ) |
| 3 | eleei | ⊢ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐵 : ( 1 ... 𝑁 ) ⟶ ℝ ) | |
| 4 | 3 | ffnd | ⊢ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐵 Fn ( 1 ... 𝑁 ) ) |
| 5 | eqfnfv | ⊢ ( ( 𝐴 Fn ( 1 ... 𝑁 ) ∧ 𝐵 Fn ( 1 ... 𝑁 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) ) | |
| 6 | 2 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑖 ) ) ) |