| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐵  =  𝐴  ∧  𝐴  ∈  𝐶 )  →  𝐵  =  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqeltr | 
							⊢ ( ( 𝐵  =  𝐴  ∧  𝐴  ∈  𝐶 )  →  𝐵  ∈  𝐶 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							jca | 
							⊢ ( ( 𝐵  =  𝐴  ∧  𝐴  ∈  𝐶 )  →  ( 𝐵  =  𝐴  ∧  𝐵  ∈  𝐶 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 )  | 
						
						
							| 5 | 
							
								4
							 | 
							anbi1i | 
							⊢ ( ( 𝐵  =  𝐴  ∧  𝐴  ∈  𝐶 )  ↔  ( 𝐴  =  𝐵  ∧  𝐴  ∈  𝐶 ) )  | 
						
						
							| 6 | 
							
								4
							 | 
							anbi1i | 
							⊢ ( ( 𝐵  =  𝐴  ∧  𝐵  ∈  𝐶 )  ↔  ( 𝐴  =  𝐵  ∧  𝐵  ∈  𝐶 ) )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							3imtr3i | 
							⊢ ( ( 𝐴  =  𝐵  ∧  𝐴  ∈  𝐶 )  →  ( 𝐴  =  𝐵  ∧  𝐵  ∈  𝐶 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  =  𝐵  ∧  𝐵  ∈  𝐶 )  →  𝐴  =  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqeltr | 
							⊢ ( ( 𝐴  =  𝐵  ∧  𝐵  ∈  𝐶 )  →  𝐴  ∈  𝐶 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							jca | 
							⊢ ( ( 𝐴  =  𝐵  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  =  𝐵  ∧  𝐴  ∈  𝐶 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							impbii | 
							⊢ ( ( 𝐴  =  𝐵  ∧  𝐴  ∈  𝐶 )  ↔  ( 𝐴  =  𝐵  ∧  𝐵  ∈  𝐶 ) )  |