Step |
Hyp |
Ref |
Expression |
1 |
|
eqelbid.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
2 |
|
eqelbid.2 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
3 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐵 ↔ 𝐵 = 𝐵 ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐶 ↔ 𝐵 = 𝐶 ) ) |
5 |
3 4
|
bibi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ↔ ( 𝐵 = 𝐵 ↔ 𝐵 = 𝐶 ) ) ) |
6 |
|
eqid |
⊢ 𝐵 = 𝐵 |
7 |
6
|
tbt |
⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 = 𝐶 ↔ 𝐵 = 𝐵 ) ) |
8 |
|
bicom |
⊢ ( ( 𝐵 = 𝐶 ↔ 𝐵 = 𝐵 ) ↔ ( 𝐵 = 𝐵 ↔ 𝐵 = 𝐶 ) ) |
9 |
7 8
|
bitri |
⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 = 𝐵 ↔ 𝐵 = 𝐶 ) ) |
10 |
5 9
|
bitr4di |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ) → 𝐵 ∈ 𝐴 ) |
13 |
10 11 12
|
rspcdva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ) → 𝐵 = 𝐶 ) |
14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) |
15 |
14
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 = 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ) |
16 |
15
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ) |
17 |
13 16
|
impbida |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 ↔ 𝑥 = 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |