Metamath Proof Explorer


Theorem eqelbid

Description: A variable elimination law for equality within a given set A . See equvel . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses eqelbid.1 ( 𝜑𝐵𝐴 )
eqelbid.2 ( 𝜑𝐶𝐴 )
Assertion eqelbid ( 𝜑 → ( ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝑥 = 𝐶 ) ↔ 𝐵 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqelbid.1 ( 𝜑𝐵𝐴 )
2 eqelbid.2 ( 𝜑𝐶𝐴 )
3 eqeq1 ( 𝑥 = 𝐵 → ( 𝑥 = 𝐵𝐵 = 𝐵 ) )
4 eqeq1 ( 𝑥 = 𝐵 → ( 𝑥 = 𝐶𝐵 = 𝐶 ) )
5 3 4 bibi12d ( 𝑥 = 𝐵 → ( ( 𝑥 = 𝐵𝑥 = 𝐶 ) ↔ ( 𝐵 = 𝐵𝐵 = 𝐶 ) ) )
6 eqid 𝐵 = 𝐵
7 6 tbt ( 𝐵 = 𝐶 ↔ ( 𝐵 = 𝐶𝐵 = 𝐵 ) )
8 bicom ( ( 𝐵 = 𝐶𝐵 = 𝐵 ) ↔ ( 𝐵 = 𝐵𝐵 = 𝐶 ) )
9 7 8 bitri ( 𝐵 = 𝐶 ↔ ( 𝐵 = 𝐵𝐵 = 𝐶 ) )
10 5 9 bitr4di ( 𝑥 = 𝐵 → ( ( 𝑥 = 𝐵𝑥 = 𝐶 ) ↔ 𝐵 = 𝐶 ) )
11 simpr ( ( 𝜑 ∧ ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝑥 = 𝐶 ) ) → ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝑥 = 𝐶 ) )
12 1 adantr ( ( 𝜑 ∧ ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝑥 = 𝐶 ) ) → 𝐵𝐴 )
13 10 11 12 rspcdva ( ( 𝜑 ∧ ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝑥 = 𝐶 ) ) → 𝐵 = 𝐶 )
14 simplr ( ( ( 𝜑𝐵 = 𝐶 ) ∧ 𝑥𝐴 ) → 𝐵 = 𝐶 )
15 14 eqeq2d ( ( ( 𝜑𝐵 = 𝐶 ) ∧ 𝑥𝐴 ) → ( 𝑥 = 𝐵𝑥 = 𝐶 ) )
16 15 ralrimiva ( ( 𝜑𝐵 = 𝐶 ) → ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝑥 = 𝐶 ) )
17 13 16 impbida ( 𝜑 → ( ∀ 𝑥𝐴 ( 𝑥 = 𝐵𝑥 = 𝐶 ) ↔ 𝐵 = 𝐶 ) )