Metamath Proof Explorer


Theorem eqelsuc

Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypothesis eqelsuc.1 𝐴 ∈ V
Assertion eqelsuc ( 𝐴 = 𝐵𝐴 ∈ suc 𝐵 )

Proof

Step Hyp Ref Expression
1 eqelsuc.1 𝐴 ∈ V
2 1 sucid 𝐴 ∈ suc 𝐴
3 suceq ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 )
4 2 3 eleqtrid ( 𝐴 = 𝐵𝐴 ∈ suc 𝐵 )