Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqeltrid.1 | ⊢ 𝐴 = 𝐵 | |
eqeltrid.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | ||
Assertion | eqeltrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrid.1 | ⊢ 𝐴 = 𝐵 | |
2 | eqeltrid.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | |
3 | 1 | a1i | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
4 | 3 2 | eqeltrd | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |