Metamath Proof Explorer


Theorem eqeltrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrid.1 𝐴 = 𝐵
eqeltrid.2 ( 𝜑𝐵𝐶 )
Assertion eqeltrid ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqeltrid.1 𝐴 = 𝐵
2 eqeltrid.2 ( 𝜑𝐵𝐶 )
3 1 a1i ( 𝜑𝐴 = 𝐵 )
4 3 2 eqeltrd ( 𝜑𝐴𝐶 )