Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqeltrrdi.1 | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) | |
eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 | ||
Assertion | eqeltrrdi | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) | |
2 | eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 | |
3 | 1 | eqcomd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
4 | 3 2 | eqeltrdi | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |