Metamath Proof Explorer


Theorem eqeltrrdi

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrrdi.1 ( 𝜑𝐵 = 𝐴 )
eqeltrrdi.2 𝐵𝐶
Assertion eqeltrrdi ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqeltrrdi.1 ( 𝜑𝐵 = 𝐴 )
2 eqeltrrdi.2 𝐵𝐶
3 1 eqcomd ( 𝜑𝐴 = 𝐵 )
4 3 2 eqeltrdi ( 𝜑𝐴𝐶 )