Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqeltrrid.1 | ⊢ 𝐵 = 𝐴 | |
eqeltrrid.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | ||
Assertion | eqeltrrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrid.1 | ⊢ 𝐵 = 𝐴 | |
2 | eqeltrrid.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | |
3 | 1 | eqcomi | ⊢ 𝐴 = 𝐵 |
4 | 3 2 | eqeltrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |