Metamath Proof Explorer


Theorem eqeltrrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrrid.1 𝐵 = 𝐴
eqeltrrid.2 ( 𝜑𝐵𝐶 )
Assertion eqeltrrid ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqeltrrid.1 𝐵 = 𝐴
2 eqeltrrid.2 ( 𝜑𝐵𝐶 )
3 1 eqcomi 𝐴 = 𝐵
4 3 2 eqeltrid ( 𝜑𝐴𝐶 )