Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqeltrrid.1 | ⊢ 𝐵 = 𝐴 | |
| eqeltrrid.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | ||
| Assertion | eqeltrrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 | ⊢ 𝐵 = 𝐴 | |
| 2 | eqeltrrid.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | |
| 3 | 1 | eqcomi | ⊢ 𝐴 = 𝐵 |
| 4 | 3 2 | eqeltrid | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |