Description: Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | eqeng | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴 ) | |
2 | breq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵 ) ) | |
3 | 1 2 | syl5ibcom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |