Metamath Proof Explorer


Theorem eqerlem

Description: Lemma for eqer . (Contributed by NM, 17-Mar-2008) (Proof shortened by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypotheses eqer.1 ( 𝑥 = 𝑦𝐴 = 𝐵 )
eqer.2 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝐴 = 𝐵 }
Assertion eqerlem ( 𝑧 𝑅 𝑤 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 eqer.1 ( 𝑥 = 𝑦𝐴 = 𝐵 )
2 eqer.2 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝐴 = 𝐵 }
3 2 brabsb ( 𝑧 𝑅 𝑤[ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 )
4 nfcsb1v 𝑥 𝑧 / 𝑥 𝐴
5 nfcsb1v 𝑥 𝑤 / 𝑥 𝐴
6 4 5 nfeq 𝑥 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴
7 nfv 𝑦 𝐴 = 𝑤 / 𝑥 𝐴
8 vex 𝑦 ∈ V
9 8 1 csbie 𝑦 / 𝑥 𝐴 = 𝐵
10 csbeq1 ( 𝑦 = 𝑤 𝑦 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 )
11 9 10 eqtr3id ( 𝑦 = 𝑤𝐵 = 𝑤 / 𝑥 𝐴 )
12 11 eqeq2d ( 𝑦 = 𝑤 → ( 𝐴 = 𝐵𝐴 = 𝑤 / 𝑥 𝐴 ) )
13 7 12 sbciegf ( 𝑤 ∈ V → ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵𝐴 = 𝑤 / 𝑥 𝐴 ) )
14 13 elv ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵𝐴 = 𝑤 / 𝑥 𝐴 )
15 csbeq1a ( 𝑥 = 𝑧𝐴 = 𝑧 / 𝑥 𝐴 )
16 15 eqeq1d ( 𝑥 = 𝑧 → ( 𝐴 = 𝑤 / 𝑥 𝐴 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 ) )
17 14 16 bitrid ( 𝑥 = 𝑧 → ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 ) )
18 6 17 sbciegf ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 ) )
19 18 elv ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 )
20 3 19 bitri ( 𝑧 𝑅 𝑤 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 )