Step |
Hyp |
Ref |
Expression |
1 |
|
eqer.1 |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
2 |
|
eqer.2 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝐴 = 𝐵 } |
3 |
2
|
brabsb |
⊢ ( 𝑧 𝑅 𝑤 ↔ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ) |
4 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
5 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
6 |
4 5
|
nfeq |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
7 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 |
8 |
|
vex |
⊢ 𝑦 ∈ V |
9 |
8 1
|
csbie |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐵 |
10 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑤 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
11 |
9 10
|
eqtr3id |
⊢ ( 𝑦 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝐴 = 𝐵 ↔ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
13 |
7 12
|
sbciegf |
⊢ ( 𝑤 ∈ V → ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
14 |
13
|
elv |
⊢ ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
15 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
17 |
14 16
|
bitrid |
⊢ ( 𝑥 = 𝑧 → ( [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
18 |
6 17
|
sbciegf |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) ) |
19 |
18
|
elv |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝐴 = 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
20 |
3 19
|
bitri |
⊢ ( 𝑧 𝑅 𝑤 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |