Metamath Proof Explorer


Theorem eqeu

Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009)

Ref Expression
Hypothesis eqeu.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion eqeu ( ( 𝐴𝐵𝜓 ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ) → ∃! 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 eqeu.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 spcegv ( 𝐴𝐵 → ( 𝜓 → ∃ 𝑥 𝜑 ) )
3 2 imp ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥 𝜑 )
4 3 3adant3 ( ( 𝐴𝐵𝜓 ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ) → ∃ 𝑥 𝜑 )
5 eqeq2 ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦𝑥 = 𝐴 ) )
6 5 imbi2d ( 𝑦 = 𝐴 → ( ( 𝜑𝑥 = 𝑦 ) ↔ ( 𝜑𝑥 = 𝐴 ) ) )
7 6 albidv ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ) )
8 7 spcegv ( 𝐴𝐵 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
9 8 imp ( ( 𝐴𝐵 ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ) → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
10 9 3adant2 ( ( 𝐴𝐵𝜓 ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ) → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
11 eu3v ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
12 4 10 11 sylanbrc ( ( 𝐴𝐵𝜓 ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝐴 ) ) → ∃! 𝑥 𝜑 )