Step |
Hyp |
Ref |
Expression |
1 |
|
eqeu.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
1
|
spcegv |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |
3 |
2
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 𝜑 ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃ 𝑥 𝜑 ) |
5 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
7 |
6
|
albidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
8 |
7
|
spcegv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
11 |
|
eu3v |
⊢ ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
12 |
4 10 11
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) → ∃! 𝑥 𝜑 ) |