Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | eqeuel | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) → ∃! 𝑥 𝑥 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
2 | 1 | biimpi | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
3 | 2 | anim1i | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) → ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
4 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
5 | 4 | eu4 | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
6 | 3 5 | sylibr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑥 = 𝑦 ) ) → ∃! 𝑥 𝑥 ∈ 𝐴 ) |