Metamath Proof Explorer


Theorem eqeuel

Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022)

Ref Expression
Assertion eqeuel ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ) → ∃! 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
2 1 biimpi ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥𝐴 )
3 2 anim1i ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ) → ( ∃ 𝑥 𝑥𝐴 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ) )
4 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
5 4 eu4 ( ∃! 𝑥 𝑥𝐴 ↔ ( ∃ 𝑥 𝑥𝐴 ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ) )
6 3 5 sylibr ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐴 ) → 𝑥 = 𝑦 ) ) → ∃! 𝑥 𝑥𝐴 )