Step |
Hyp |
Ref |
Expression |
1 |
|
eqfnfv2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
2 |
|
eqss |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) |
3 |
2
|
biancomi |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
5 |
|
anass |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
6 |
|
dfss3 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
7 |
6
|
anbi1i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
8 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
9 |
7 8
|
bitr4i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
10 |
9
|
anbi2i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝐴 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
11 |
4 5 10
|
3bitri |
⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
12 |
1 11
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) ) |