| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqg0el.1 | ⊢  ∼   =  ( 𝐺  ~QG  𝐻 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 3 | 2 1 | eqger | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  ( Base ‘ 𝐺 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →   ∼   Er  ( Base ‘ 𝐺 ) ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 6 | 2 5 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 8 | 4 7 | erth | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 0g ‘ 𝐺 )  ∼  𝑋  ↔  [ ( 0g ‘ 𝐺 ) ]  ∼   =  [ 𝑋 ]  ∼  ) ) | 
						
							| 9 | 2 1 5 | eqgid | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  [ ( 0g ‘ 𝐺 ) ]  ∼   =  𝐻 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  [ ( 0g ‘ 𝐺 ) ]  ∼   =  𝐻 ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( [ ( 0g ‘ 𝐺 ) ]  ∼   =  [ 𝑋 ]  ∼   ↔  𝐻  =  [ 𝑋 ]  ∼  ) ) | 
						
							| 12 |  | eqcom | ⊢ ( 𝐻  =  [ 𝑋 ]  ∼   ↔  [ 𝑋 ]  ∼   =  𝐻 ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐻  =  [ 𝑋 ]  ∼   ↔  [ 𝑋 ]  ∼   =  𝐻 ) ) | 
						
							| 14 | 8 11 13 | 3bitrrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( [ 𝑋 ]  ∼   =  𝐻  ↔  ( 0g ‘ 𝐺 )  ∼  𝑋 ) ) | 
						
							| 15 |  | errel | ⊢ (  ∼   Er  ( Base ‘ 𝐺 )  →  Rel   ∼  ) | 
						
							| 16 |  | relelec | ⊢ ( Rel   ∼   →  ( 𝑋  ∈  [ ( 0g ‘ 𝐺 ) ]  ∼   ↔  ( 0g ‘ 𝐺 )  ∼  𝑋 ) ) | 
						
							| 17 | 3 15 16 | 3syl | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑋  ∈  [ ( 0g ‘ 𝐺 ) ]  ∼   ↔  ( 0g ‘ 𝐺 )  ∼  𝑋 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑋  ∈  [ ( 0g ‘ 𝐺 ) ]  ∼   ↔  ( 0g ‘ 𝐺 )  ∼  𝑋 ) ) | 
						
							| 19 | 10 | eleq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑋  ∈  [ ( 0g ‘ 𝐺 ) ]  ∼   ↔  𝑋  ∈  𝐻 ) ) | 
						
							| 20 | 14 18 19 | 3bitr2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( [ 𝑋 ]  ∼   =  𝐻  ↔  𝑋  ∈  𝐻 ) ) |