| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqg0subg.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 2 |  | eqg0subg.s | ⊢ 𝑆  =  {  0  } | 
						
							| 3 |  | eqg0subg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | eqg0subg.r | ⊢ 𝑅  =  ( 𝐺  ~QG  𝑆 ) | 
						
							| 5 | 1 | 0subg | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 6 | 3 | subgss | ⊢ ( {  0  }  ∈  ( SubGrp ‘ 𝐺 )  →  {  0  }  ⊆  𝐵 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ⊆  𝐵 ) | 
						
							| 8 | 2 7 | eqsstrid | ⊢ ( 𝐺  ∈  Grp  →  𝑆  ⊆  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 11 | 3 9 10 4 | eqgfval | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑆  ⊆  𝐵 )  →  𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) } ) | 
						
							| 12 | 8 11 | mpdan | ⊢ ( 𝐺  ∈  Grp  →  𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) } ) | 
						
							| 13 |  | opabresid | ⊢ (  I   ↾  𝐵 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) } | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  →  𝑥  ∈  𝐵 ) | 
						
							| 15 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 16 | 15 | equcoms | ⊢ ( 𝑦  =  𝑥  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 17 | 16 | biimpac | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  →  𝑦  ∈  𝐵 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  →  𝑦  =  𝑥 ) | 
						
							| 19 | 14 17 18 | jca31 | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  =  𝑥 ) ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 21 | 20 | anim1i | ⊢ ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  =  𝑥 )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  =  𝑥 )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) ) ) | 
						
							| 23 | 19 22 | impbid2 | ⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  =  𝑥 ) ) ) | 
						
							| 24 |  | simpl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 27 | 20 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 28 | 3 9 24 26 27 | grpinv11 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ↔  𝑦  =  𝑥 ) ) | 
						
							| 29 | 3 9 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 30 | 29 | adantrr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 31 | 3 10 1 9 | grpinvid2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝐵  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ∈  𝐵 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  =   0  ) ) | 
						
							| 32 | 24 26 30 31 | syl3anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  =   0  ) ) | 
						
							| 33 | 28 32 | bitr3d | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑦  =  𝑥  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  =   0  ) ) | 
						
							| 34 | 33 | pm5.32da | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑦  =  𝑥 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  =   0  ) ) ) | 
						
							| 35 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 36 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 37 | 35 36 | prss | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐵 ) | 
						
							| 38 | 37 | a1i | ⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  { 𝑥 ,  𝑦 }  ⊆  𝐵 ) ) | 
						
							| 39 | 2 | eleq2i | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  {  0  } ) | 
						
							| 40 |  | ovex | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  V | 
						
							| 41 | 40 | elsn | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  {  0  }  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  =   0  ) | 
						
							| 42 | 39 41 | bitr2i | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  =   0   ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 43 | 42 | a1i | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  =   0   ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) ) | 
						
							| 44 | 38 43 | anbi12d | ⊢ ( 𝐺  ∈  Grp  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  =   0  )  ↔  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 45 | 23 34 44 | 3bitrd | ⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 )  ↔  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 46 | 45 | opabbidv | ⊢ ( 𝐺  ∈  Grp  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  =  𝑥 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) } ) | 
						
							| 47 | 13 46 | eqtr2id | ⊢ ( 𝐺  ∈  Grp  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝐵  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑆 ) }  =  (  I   ↾  𝐵 ) ) | 
						
							| 48 | 12 47 | eqtrd | ⊢ ( 𝐺  ∈  Grp  →  𝑅  =  (  I   ↾  𝐵 ) ) |