| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqger.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqger.r | ⊢  ∼   =  ( 𝐺  ~QG  𝑌 ) | 
						
							| 3 |  | eqgcpbl.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | nsgsubg | ⊢ ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  →  𝑌  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝑌  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 6 |  | subgrcl | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝐺  ∈  Grp ) | 
						
							| 8 |  | simprl | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝐴  ∼  𝐶 ) | 
						
							| 9 | 1 | subgss | ⊢ ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  →  𝑌  ⊆  𝑋 ) | 
						
							| 10 | 5 9 | syl | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝑌  ⊆  𝑋 ) | 
						
							| 11 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 12 | 1 11 3 2 | eqgval | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ⊆  𝑋 )  →  ( 𝐴  ∼  𝐶  ↔  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  ∈  𝑌 ) ) ) | 
						
							| 13 | 7 10 12 | syl2anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( 𝐴  ∼  𝐶  ↔  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  ∈  𝑌 ) ) ) | 
						
							| 14 | 8 13 | mpbid | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  ∈  𝑌 ) ) | 
						
							| 15 | 14 | simp1d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 16 |  | simprr | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝐵  ∼  𝐷 ) | 
						
							| 17 | 1 11 3 2 | eqgval | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ⊆  𝑋 )  →  ( 𝐵  ∼  𝐷  ↔  ( 𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  𝐷 )  ∈  𝑌 ) ) ) | 
						
							| 18 | 7 10 17 | syl2anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( 𝐵  ∼  𝐷  ↔  ( 𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  𝐷 )  ∈  𝑌 ) ) ) | 
						
							| 19 | 16 18 | mpbid | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( 𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  𝐷 )  ∈  𝑌 ) ) | 
						
							| 20 | 19 | simp1d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 21 | 1 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 22 | 7 15 20 21 | syl3anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( 𝐴  +  𝐵 )  ∈  𝑋 ) | 
						
							| 23 | 14 | simp2d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝐶  ∈  𝑋 ) | 
						
							| 24 | 19 | simp2d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝐷  ∈  𝑋 ) | 
						
							| 25 | 1 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐶  ∈  𝑋  ∧  𝐷  ∈  𝑋 )  →  ( 𝐶  +  𝐷 )  ∈  𝑋 ) | 
						
							| 26 | 7 23 24 25 | syl3anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( 𝐶  +  𝐷 )  ∈  𝑋 ) | 
						
							| 27 | 1 3 11 | grpinvadd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐴  +  𝐵 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) | 
						
							| 28 | 7 15 20 27 | syl3anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐴  +  𝐵 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴  +  𝐵 ) )  +  ( 𝐶  +  𝐷 ) )  =  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) )  +  ( 𝐶  +  𝐷 ) ) ) | 
						
							| 30 | 1 11 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋 ) | 
						
							| 31 | 7 20 30 | syl2anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋 ) | 
						
							| 32 | 1 11 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 33 | 7 15 32 | syl2anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋 ) | 
						
							| 34 | 1 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋  ∧  ( 𝐶  +  𝐷 )  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) )  +  ( 𝐶  +  𝐷 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) ) ) ) | 
						
							| 35 | 7 31 33 26 34 | syl13anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) )  +  ( 𝐶  +  𝐷 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) ) ) ) | 
						
							| 36 | 29 35 | eqtrd | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴  +  𝐵 ) )  +  ( 𝐶  +  𝐷 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) ) ) ) | 
						
							| 37 | 1 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝐷  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  𝐷 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) ) ) | 
						
							| 38 | 7 33 23 24 37 | syl13anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  𝐷 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  𝐷 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  =  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) | 
						
							| 40 | 1 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  ∈  𝑋 ) | 
						
							| 41 | 7 33 23 40 | syl3anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  ∈  𝑋 ) | 
						
							| 42 | 1 3 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  ∈  𝑋  ∧  𝐷  ∈  𝑋  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋 ) )  →  ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  𝐷 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  =  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) | 
						
							| 43 | 7 41 24 31 42 | syl13anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  𝐷 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  =  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) | 
						
							| 44 | 39 43 | eqtr3d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  =  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) | 
						
							| 45 | 14 | simp3d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  ∈  𝑌 ) | 
						
							| 46 | 19 | simp3d | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  𝐷 )  ∈  𝑌 ) | 
						
							| 47 |  | simpl | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  𝑌  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 48 | 1 3 | nsgbi | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋  ∧  𝐷  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  𝐷 )  ∈  𝑌  ↔  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  ∈  𝑌 ) ) | 
						
							| 49 | 47 31 24 48 | syl3anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  𝐷 )  ∈  𝑌  ↔  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  ∈  𝑌 ) ) | 
						
							| 50 | 46 49 | mpbid | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  ∈  𝑌 ) | 
						
							| 51 | 3 | subgcl | ⊢ ( ( 𝑌  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  ∈  𝑌  ∧  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  ∈  𝑌 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) )  ∈  𝑌 ) | 
						
							| 52 | 5 45 50 51 | syl3anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  𝐶 )  +  ( 𝐷  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) )  ∈  𝑌 ) | 
						
							| 53 | 44 52 | eqeltrd | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  ∈  𝑌 ) | 
						
							| 54 | 1 3 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝑋  ∧  ( 𝐶  +  𝐷 )  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) )  ∈  𝑋 ) | 
						
							| 55 | 7 33 26 54 | syl3anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) )  ∈  𝑋 ) | 
						
							| 56 | 1 3 | nsgbi | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) )  ∈  𝑋  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋 )  →  ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  ∈  𝑌  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) ) )  ∈  𝑌 ) ) | 
						
							| 57 | 47 55 31 56 | syl3anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) )  ∈  𝑌  ↔  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) ) )  ∈  𝑌 ) ) | 
						
							| 58 | 53 57 | mpbid | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 )  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 )  +  ( 𝐶  +  𝐷 ) ) )  ∈  𝑌 ) | 
						
							| 59 | 36 58 | eqeltrd | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴  +  𝐵 ) )  +  ( 𝐶  +  𝐷 ) )  ∈  𝑌 ) | 
						
							| 60 | 1 11 3 2 | eqgval | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ⊆  𝑋 )  →  ( ( 𝐴  +  𝐵 )  ∼  ( 𝐶  +  𝐷 )  ↔  ( ( 𝐴  +  𝐵 )  ∈  𝑋  ∧  ( 𝐶  +  𝐷 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴  +  𝐵 ) )  +  ( 𝐶  +  𝐷 ) )  ∈  𝑌 ) ) ) | 
						
							| 61 | 7 10 60 | syl2anc | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( ( 𝐴  +  𝐵 )  ∼  ( 𝐶  +  𝐷 )  ↔  ( ( 𝐴  +  𝐵 )  ∈  𝑋  ∧  ( 𝐶  +  𝐷 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴  +  𝐵 ) )  +  ( 𝐶  +  𝐷 ) )  ∈  𝑌 ) ) ) | 
						
							| 62 | 22 26 59 61 | mpbir3and | ⊢ ( ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  ∧  ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 ) )  →  ( 𝐴  +  𝐵 )  ∼  ( 𝐶  +  𝐷 ) ) | 
						
							| 63 | 62 | ex | ⊢ ( 𝑌  ∈  ( NrmSGrp ‘ 𝐺 )  →  ( ( 𝐴  ∼  𝐶  ∧  𝐵  ∼  𝐷 )  →  ( 𝐴  +  𝐵 )  ∼  ( 𝐶  +  𝐷 ) ) ) |