Step |
Hyp |
Ref |
Expression |
1 |
|
eqger.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
eqger.r |
⊢ ∼ = ( 𝐺 ~QG 𝑌 ) |
3 |
|
eqid |
⊢ ( 𝑋 / ∼ ) = ( 𝑋 / ∼ ) |
4 |
|
breq2 |
⊢ ( [ 𝑥 ] ∼ = 𝐴 → ( 𝑌 ≈ [ 𝑥 ] ∼ ↔ 𝑌 ≈ 𝐴 ) ) |
5 |
|
simpl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
subgrcl |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
7 |
1
|
subgss |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
8 |
6 7
|
jca |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
10 |
1 2 9
|
eqglact |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
11 |
10
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
12 |
8 11
|
sylan |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
13 |
2
|
ovexi |
⊢ ∼ ∈ V |
14 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 𝑥 ] ∼ ∈ V ) |
15 |
13 14
|
ax-mp |
⊢ [ 𝑥 ] ∼ ∈ V |
16 |
12 15
|
eqeltrrdi |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ∈ V ) |
17 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
18 |
17 1 9
|
grplactf1o |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) : 𝑋 –1-1-onto→ 𝑋 ) |
19 |
17 1
|
grplactfval |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
21 |
20
|
f1oeq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) : 𝑋 –1-1-onto→ 𝑋 ↔ ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
22 |
18 21
|
mpbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
23 |
6 22
|
sylan |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
24 |
|
f1of1 |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
25 |
23 24
|
syl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
26 |
7
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ⊆ 𝑋 ) |
27 |
|
f1ores |
⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌 –1-1-onto→ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
28 |
25 26 27
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌 –1-1-onto→ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
29 |
|
f1oen2g |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ∈ V ∧ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌 –1-1-onto→ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) → 𝑌 ≈ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
30 |
5 16 28 29
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ≈ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
31 |
30 12
|
breqtrrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ≈ [ 𝑥 ] ∼ ) |
32 |
3 4 31
|
ectocld |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( 𝑋 / ∼ ) ) → 𝑌 ≈ 𝐴 ) |