Metamath Proof Explorer


Theorem eqgen

Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses eqger.x 𝑋 = ( Base ‘ 𝐺 )
eqger.r = ( 𝐺 ~QG 𝑌 )
Assertion eqgen ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( 𝑋 / ) ) → 𝑌𝐴 )

Proof

Step Hyp Ref Expression
1 eqger.x 𝑋 = ( Base ‘ 𝐺 )
2 eqger.r = ( 𝐺 ~QG 𝑌 )
3 eqid ( 𝑋 / ) = ( 𝑋 / )
4 breq2 ( [ 𝑥 ] = 𝐴 → ( 𝑌 ≈ [ 𝑥 ] 𝑌𝐴 ) )
5 simpl ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) )
6 subgrcl ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
7 1 subgss ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌𝑋 )
8 6 7 jca ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ∈ Grp ∧ 𝑌𝑋 ) )
9 eqid ( +g𝐺 ) = ( +g𝐺 )
10 1 2 9 eqglact ( ( 𝐺 ∈ Grp ∧ 𝑌𝑋𝑥𝑋 ) → [ 𝑥 ] = ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) )
11 10 3expa ( ( ( 𝐺 ∈ Grp ∧ 𝑌𝑋 ) ∧ 𝑥𝑋 ) → [ 𝑥 ] = ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) )
12 8 11 sylan ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → [ 𝑥 ] = ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) )
13 2 ovexi ∈ V
14 ecexg ( ∈ V → [ 𝑥 ] ∈ V )
15 13 14 ax-mp [ 𝑥 ] ∈ V
16 12 15 eqeltrrdi ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) ∈ V )
17 eqid ( 𝑦𝑋 ↦ ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) = ( 𝑦𝑋 ↦ ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
18 17 1 9 grplactf1o ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( 𝑦𝑋 ↦ ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) : 𝑋1-1-onto𝑋 )
19 17 1 grplactfval ( 𝑥𝑋 → ( ( 𝑦𝑋 ↦ ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) = ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) )
20 19 adantl ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( 𝑦𝑋 ↦ ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) = ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) )
21 f1oeq1 ( ( ( 𝑦𝑋 ↦ ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) = ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) → ( ( ( 𝑦𝑋 ↦ ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) : 𝑋1-1-onto𝑋 ↔ ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) : 𝑋1-1-onto𝑋 ) )
22 20 21 syl ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( ( ( 𝑦𝑋 ↦ ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) : 𝑋1-1-onto𝑋 ↔ ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) : 𝑋1-1-onto𝑋 ) )
23 18 22 mpbid ( ( 𝐺 ∈ Grp ∧ 𝑥𝑋 ) → ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) : 𝑋1-1-onto𝑋 )
24 6 23 sylan ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) : 𝑋1-1-onto𝑋 )
25 f1of1 ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) : 𝑋1-1-onto𝑋 → ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) : 𝑋1-1𝑋 )
26 24 25 syl ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) : 𝑋1-1𝑋 )
27 7 adantr ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → 𝑌𝑋 )
28 f1ores ( ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) : 𝑋1-1𝑋𝑌𝑋 ) → ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌1-1-onto→ ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) )
29 26 27 28 syl2anc ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌1-1-onto→ ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) )
30 f1oen2g ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) ∈ V ∧ ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌1-1-onto→ ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) ) → 𝑌 ≈ ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) )
31 5 16 29 30 syl3anc ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → 𝑌 ≈ ( ( 𝑧𝑋 ↦ ( 𝑥 ( +g𝐺 ) 𝑧 ) ) “ 𝑌 ) )
32 31 12 breqtrrd ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥𝑋 ) → 𝑌 ≈ [ 𝑥 ] )
33 3 4 32 ectocld ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( 𝑋 / ) ) → 𝑌𝐴 )