| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqger.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
eqger.r |
⊢ ∼ = ( 𝐺 ~QG 𝑌 ) |
| 3 |
2
|
releqg |
⊢ Rel ∼ |
| 4 |
3
|
a1i |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → Rel ∼ ) |
| 5 |
|
subgrcl |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 6 |
1
|
subgss |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 7 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 9 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) ) |
| 10 |
5 6 9
|
syl2anc |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) ) |
| 11 |
10
|
biimpa |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) |
| 12 |
11
|
simp2d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∈ 𝑋 ) |
| 13 |
11
|
simp1d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑥 ∈ 𝑋 ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝐺 ∈ Grp ) |
| 15 |
1 7 14 13
|
grpinvcld |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
| 16 |
1 8 7
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 17 |
14 15 12 16
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 18 |
1 7
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 19 |
14 13 18
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑥 ) |
| 20 |
19
|
oveq2d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 21 |
17 20
|
eqtrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 22 |
11
|
simp3d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) |
| 23 |
7
|
subginvcl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝑌 ) |
| 24 |
22 23
|
syldan |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝑌 ) |
| 25 |
21 24
|
eqeltrrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) |
| 26 |
6
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑌 ⊆ 𝑋 ) |
| 27 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 28 |
14 26 27
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 29 |
12 13 25 28
|
mpbir3and |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∼ 𝑥 ) |
| 30 |
13
|
adantrr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∈ 𝑋 ) |
| 31 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 32 |
5 6 31
|
syl2anc |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 33 |
32
|
biimpa |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∼ 𝑧 ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) |
| 34 |
33
|
adantrl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) |
| 35 |
34
|
simp2d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑧 ∈ 𝑋 ) |
| 36 |
5
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝐺 ∈ Grp ) |
| 37 |
1 7 36 30
|
grpinvcld |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
| 38 |
12
|
adantrr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑦 ∈ 𝑋 ) |
| 39 |
1 7 36 38
|
grpinvcld |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 40 |
1 8 36 39 35
|
grpcld |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 41 |
1 8 36 37 38 40
|
grpassd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 43 |
1 8 42 7
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 44 |
36 38 43
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 45 |
44
|
oveq1d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 46 |
1 8 36 38 39 35
|
grpassd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 47 |
1 8 42 36 35
|
grplidd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
| 48 |
45 46 47
|
3eqtr3d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑧 ) |
| 49 |
48
|
oveq2d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 50 |
41 49
|
eqtrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 51 |
|
simpl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 52 |
22
|
adantrr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) |
| 53 |
34
|
simp3d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) |
| 54 |
8
|
subgcl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑌 ) |
| 55 |
51 52 53 54
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑌 ) |
| 56 |
50 55
|
eqeltrrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) |
| 57 |
6
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑌 ⊆ 𝑋 ) |
| 58 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 59 |
36 57 58
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 60 |
30 35 56 59
|
mpbir3and |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∼ 𝑧 ) |
| 61 |
1 8 42 7
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 62 |
5 61
|
sylan |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 63 |
42
|
subg0cl |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑌 ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑌 ) |
| 65 |
62 64
|
eqeltrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) |
| 66 |
65
|
ex |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) |
| 67 |
66
|
pm4.71rd |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 68 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 69 |
5 6 68
|
syl2anc |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
| 70 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) |
| 71 |
|
anidm |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) |
| 72 |
71
|
anbi2ci |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) |
| 73 |
70 72
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) |
| 74 |
69 73
|
bitrdi |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑥 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 75 |
67 74
|
bitr4d |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥 ) ) |
| 76 |
4 29 60 75
|
iserd |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |