Step |
Hyp |
Ref |
Expression |
1 |
|
eqger.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
eqger.r |
⊢ ∼ = ( 𝐺 ~QG 𝑌 ) |
3 |
2
|
releqg |
⊢ Rel ∼ |
4 |
3
|
a1i |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → Rel ∼ ) |
5 |
|
subgrcl |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
6 |
1
|
subgss |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
7 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
9 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) ) |
10 |
5 6 9
|
syl2anc |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) ) |
11 |
10
|
biimpa |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) ) |
12 |
11
|
simp2d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∈ 𝑋 ) |
13 |
11
|
simp1d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑥 ∈ 𝑋 ) |
14 |
5
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝐺 ∈ Grp ) |
15 |
1 7
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
16 |
14 13 15
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
17 |
1 8 7
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
18 |
14 16 12 17
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
19 |
1 7
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑥 ) |
20 |
14 13 19
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = 𝑥 ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
22 |
18 21
|
eqtrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
23 |
11
|
simp3d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) |
24 |
7
|
subginvcl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝑌 ) |
25 |
23 24
|
syldan |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝑌 ) |
26 |
22 25
|
eqeltrrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) |
27 |
6
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑌 ⊆ 𝑋 ) |
28 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
29 |
14 27 28
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
30 |
12 13 26 29
|
mpbir3and |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∼ 𝑥 ) |
31 |
13
|
adantrr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∈ 𝑋 ) |
32 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
33 |
5 6 32
|
syl2anc |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
34 |
33
|
biimpa |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∼ 𝑧 ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) |
35 |
34
|
adantrl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) |
36 |
35
|
simp2d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑧 ∈ 𝑋 ) |
37 |
5
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝐺 ∈ Grp ) |
38 |
37 31 15
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ) |
39 |
12
|
adantrr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑦 ∈ 𝑋 ) |
40 |
1 7
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
41 |
37 39 40
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
42 |
1 8
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
43 |
37 41 36 42
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
44 |
1 8
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
45 |
37 38 39 43 44
|
syl13anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
46 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
47 |
1 8 46 7
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
48 |
37 39 47
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
49 |
48
|
oveq1d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
50 |
1 8
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
51 |
37 39 41 36 50
|
syl13anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
52 |
1 8 46
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
53 |
37 36 52
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
54 |
49 51 53
|
3eqtr3d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑧 ) |
55 |
54
|
oveq2d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
56 |
45 55
|
eqtrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
57 |
|
simpl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
58 |
23
|
adantrr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ) |
59 |
35
|
simp3d |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) |
60 |
8
|
subgcl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑌 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑌 ) |
61 |
57 58 59 60
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑌 ) |
62 |
56 61
|
eqeltrrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) |
63 |
6
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑌 ⊆ 𝑋 ) |
64 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
65 |
37 63 64
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
66 |
31 36 62 65
|
mpbir3and |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∼ 𝑧 ) |
67 |
1 8 46 7
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
68 |
5 67
|
sylan |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
69 |
46
|
subg0cl |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑌 ) |
70 |
69
|
adantr |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑌 ) |
71 |
68 70
|
eqeltrd |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) |
72 |
71
|
ex |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) |
73 |
72
|
pm4.71rd |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) ) |
74 |
1 7 8 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
75 |
5 6 74
|
syl2anc |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) ) |
76 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ) |
77 |
|
anidm |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) |
78 |
77
|
anbi2ci |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) |
79 |
76 78
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) |
80 |
75 79
|
bitrdi |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∼ 𝑥 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑌 ∧ 𝑥 ∈ 𝑋 ) ) ) |
81 |
73 80
|
bitr4d |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥 ) ) |
82 |
4 30 66 81
|
iserd |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |