Step |
Hyp |
Ref |
Expression |
1 |
|
eqger.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
eqger.r |
⊢ ∼ = ( 𝐺 ~QG 𝑌 ) |
3 |
|
eqglact.3 |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
5 |
1 4 3 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝑥 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) |
6 |
|
3anass |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) |
7 |
5 6
|
bitrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝑥 ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) ) |
8 |
7
|
baibd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) |
9 |
8
|
3impa |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) |
10 |
9
|
abbidv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∣ 𝐴 ∼ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) } ) |
11 |
|
dfec2 |
⊢ ( 𝐴 ∈ 𝑋 → [ 𝐴 ] ∼ = { 𝑥 ∣ 𝐴 ∼ 𝑥 } ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = { 𝑥 ∣ 𝐴 ∼ 𝑥 } ) |
13 |
|
eqid |
⊢ ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) = ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) |
14 |
13 1 3 4
|
grplactcnv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
15 |
14
|
simprd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
16 |
13 1
|
grplactfval |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ) |
18 |
17
|
cnveqd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ) |
19 |
1 4
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
20 |
13 1
|
grplactfval |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
22 |
15 18 21
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
23 |
22
|
cnveqd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
24 |
23
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ◡ ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
25 |
24
|
imaeq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ◡ ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) “ 𝑌 ) ) |
26 |
|
imacnvcnv |
⊢ ( ◡ ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) |
27 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) |
28 |
27
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) “ 𝑌 ) = { 𝑥 ∈ 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 } |
29 |
|
df-rab |
⊢ { 𝑥 ∈ 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) } |
30 |
28 29
|
eqtri |
⊢ ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) “ 𝑌 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) } |
31 |
25 26 30
|
3eqtr3g |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) } ) |
32 |
10 12 31
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) ) |