Metamath Proof Explorer


Theorem eqgval

Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015) (Revised by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses eqgval.x 𝑋 = ( Base ‘ 𝐺 )
eqgval.n 𝑁 = ( invg𝐺 )
eqgval.p + = ( +g𝐺 )
eqgval.r 𝑅 = ( 𝐺 ~QG 𝑆 )
Assertion eqgval ( ( 𝐺𝑉𝑆𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 eqgval.x 𝑋 = ( Base ‘ 𝐺 )
2 eqgval.n 𝑁 = ( invg𝐺 )
3 eqgval.p + = ( +g𝐺 )
4 eqgval.r 𝑅 = ( 𝐺 ~QG 𝑆 )
5 1 2 3 4 eqgfval ( ( 𝐺𝑉𝑆𝑋 ) → 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) } )
6 5 breqd ( ( 𝐺𝑉𝑆𝑋 ) → ( 𝐴 𝑅 𝐵𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ) )
7 brabv ( 𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
8 7 adantl ( ( ( 𝐺𝑉𝑆𝑋 ) ∧ 𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
9 simpr1 ( ( ( 𝐺𝑉𝑆𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐴𝑋 )
10 9 elexd ( ( ( 𝐺𝑉𝑆𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐴 ∈ V )
11 simpr2 ( ( ( 𝐺𝑉𝑆𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐵𝑋 )
12 11 elexd ( ( ( 𝐺𝑉𝑆𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐵 ∈ V )
13 10 12 jca ( ( ( 𝐺𝑉𝑆𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
14 vex 𝑥 ∈ V
15 vex 𝑦 ∈ V
16 14 15 prss ( ( 𝑥𝑋𝑦𝑋 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝑋 )
17 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝑋𝐴𝑋 ) )
18 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝑋𝐵𝑋 ) )
19 17 18 bi2anan9 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑥𝑋𝑦𝑋 ) ↔ ( 𝐴𝑋𝐵𝑋 ) ) )
20 16 19 bitr3id ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( { 𝑥 , 𝑦 } ⊆ 𝑋 ↔ ( 𝐴𝑋𝐵𝑋 ) ) )
21 fveq2 ( 𝑥 = 𝐴 → ( 𝑁𝑥 ) = ( 𝑁𝐴 ) )
22 id ( 𝑦 = 𝐵𝑦 = 𝐵 )
23 21 22 oveqan12d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑁𝑥 ) + 𝑦 ) = ( ( 𝑁𝐴 ) + 𝐵 ) )
24 23 eleq1d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ↔ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) )
25 20 24 anbi12d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝐴𝑋𝐵𝑋 ) ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) )
26 df-3an ( ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ↔ ( ( 𝐴𝑋𝐵𝑋 ) ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) )
27 25 26 bitr4di ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) ↔ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) )
28 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) }
29 27 28 brabga ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ↔ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) )
30 8 13 29 pm5.21nd ( ( 𝐺𝑉𝑆𝑋 ) → ( 𝐴 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ↔ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) )
31 6 30 bitrd ( ( 𝐺𝑉𝑆𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴𝑋𝐵𝑋 ∧ ( ( 𝑁𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) )