Step |
Hyp |
Ref |
Expression |
1 |
|
eqgval.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
eqgval.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
3 |
|
eqgval.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
eqgval.r |
⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) |
5 |
1 2 3 4
|
eqgfval |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ) |
6 |
5
|
breqd |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ) ) |
7 |
|
brabv |
⊢ ( 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
9 |
|
simpr1 |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐴 ∈ 𝑋 ) |
10 |
9
|
elexd |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐴 ∈ V ) |
11 |
|
simpr2 |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐵 ∈ 𝑋 ) |
12 |
11
|
elexd |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐵 ∈ V ) |
13 |
10 12
|
jca |
⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
|
vex |
⊢ 𝑦 ∈ V |
16 |
14 15
|
prss |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝑋 ) |
17 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋 ) ) |
18 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋 ) ) |
19 |
17 18
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
20 |
16 19
|
bitr3id |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( { 𝑥 , 𝑦 } ⊆ 𝑋 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐴 ) ) |
22 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
23 |
21 22
|
oveqan12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) = ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ) |
24 |
23
|
eleq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ↔ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) |
25 |
20 24
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
26 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) |
27 |
25 26
|
bitr4di |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
28 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } |
29 |
27 28
|
brabga |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
30 |
8 13 29
|
pm5.21nd |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
31 |
6 30
|
bitrd |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |