Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | eqif | ⊢ ( 𝐴 = if ( 𝜑 , 𝐵 , 𝐶 ) ↔ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∨ ( ¬ 𝜑 ∧ 𝐴 = 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 | ⊢ ( if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐵 → ( 𝐴 = if ( 𝜑 , 𝐵 , 𝐶 ) ↔ 𝐴 = 𝐵 ) ) | |
2 | eqeq2 | ⊢ ( if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐶 → ( 𝐴 = if ( 𝜑 , 𝐵 , 𝐶 ) ↔ 𝐴 = 𝐶 ) ) | |
3 | 1 2 | elimif | ⊢ ( 𝐴 = if ( 𝜑 , 𝐵 , 𝐶 ) ↔ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∨ ( ¬ 𝜑 ∧ 𝐴 = 𝐶 ) ) ) |