Step |
Hyp |
Ref |
Expression |
1 |
|
infexd.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
2 |
|
df-inf |
⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) |
3 |
|
cnvso |
⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |
4 |
1 3
|
sylib |
⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
5 |
4
|
eqsup |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = 𝐶 ) ) |
6 |
|
brcnvg |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑦 ∈ V ) → ( 𝐶 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝐶 ) ) |
7 |
6
|
bicomd |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑦 ∈ V ) → ( 𝑦 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 𝑦 ) ) |
8 |
7
|
elvd |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 𝑦 ) ) |
9 |
8
|
notbid |
⊢ ( 𝐶 ∈ 𝐴 → ( ¬ 𝑦 𝑅 𝐶 ↔ ¬ 𝐶 ◡ 𝑅 𝑦 ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝐶 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ) ) |
11 |
|
vex |
⊢ 𝑦 ∈ V |
12 |
|
brcnvg |
⊢ ( ( 𝑦 ∈ V ∧ 𝐶 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝐶 ↔ 𝐶 𝑅 𝑦 ) ) |
13 |
11 12
|
mpan |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 ◡ 𝑅 𝐶 ↔ 𝐶 𝑅 𝑦 ) ) |
14 |
13
|
bicomd |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝐶 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝐶 ) ) |
15 |
|
vex |
⊢ 𝑧 ∈ V |
16 |
11 15
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
17 |
16
|
a1i |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) ) |
18 |
17
|
bicomd |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑧 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝑧 ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝐶 ∈ 𝐴 → ( ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) |
20 |
14 19
|
imbi12d |
⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ↔ ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝐶 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
22 |
10 21
|
anbi12d |
⊢ ( 𝐶 ∈ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
23 |
22
|
pm5.32i |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
24 |
|
3anass |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |
25 |
|
3anass |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
26 |
23 24 25
|
3bitr4i |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
27 |
26
|
biimpi |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) → ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
28 |
5 27
|
impel |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = 𝐶 ) |
29 |
2 28
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) |
30 |
29
|
ex |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) ) |