Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
eqinfd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
eqinfd.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝑦 𝑅 𝐶 ) | ||
eqinfd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝐶 𝑅 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) | ||
Assertion | eqinfd | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
2 | eqinfd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
3 | eqinfd.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ¬ 𝑦 𝑅 𝐶 ) | |
4 | eqinfd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝐶 𝑅 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) | |
5 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ) |
6 | 4 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) |
7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) |
8 | 1 | eqinf | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) ) |
9 | 2 5 7 8 | mp3and | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) |