Metamath Proof Explorer


Theorem eqle

Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005)

Ref Expression
Assertion eqle ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 leid ( 𝐴 ∈ ℝ → 𝐴𝐴 )
2 breq2 ( 𝐴 = 𝐵 → ( 𝐴𝐴𝐴𝐵 ) )
3 2 biimpac ( ( 𝐴𝐴𝐴 = 𝐵 ) → 𝐴𝐵 )
4 1 3 sylan ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐴𝐵 )