Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqled.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| eqled.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | eqled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqled.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | eqled.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | eqle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |