Metamath Proof Explorer


Theorem eqled

Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eqled.1 ( 𝜑𝐴 ∈ ℝ )
eqled.2 ( 𝜑𝐴 = 𝐵 )
Assertion eqled ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 eqled.1 ( 𝜑𝐴 ∈ ℝ )
2 eqled.2 ( 𝜑𝐴 = 𝐵 )
3 eqle ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐴𝐵 )
4 1 2 3 syl2anc ( 𝜑𝐴𝐵 )