Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqled.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
eqled.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
Assertion | eqled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqled.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | eqled.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | eqle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |