Metamath Proof Explorer


Theorem eqlei

Description: Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999) (Revised by Alexander van der Vekens, 20-Mar-2018)

Ref Expression
Hypothesis lt.1 𝐴 ∈ ℝ
Assertion eqlei ( 𝐴 = 𝐵𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 eleq1a ( 𝐴 ∈ ℝ → ( 𝐵 = 𝐴𝐵 ∈ ℝ ) )
3 1 2 ax-mp ( 𝐵 = 𝐴𝐵 ∈ ℝ )
4 3 eqcoms ( 𝐴 = 𝐵𝐵 ∈ ℝ )
5 letri3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
6 1 5 mpan ( 𝐵 ∈ ℝ → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
7 simpl ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 )
8 6 7 syl6bi ( 𝐵 ∈ ℝ → ( 𝐴 = 𝐵𝐴𝐵 ) )
9 4 8 mpcom ( 𝐴 = 𝐵𝐴𝐵 )