Metamath Proof Explorer


Theorem eqlei2

Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018)

Ref Expression
Hypothesis lt.1 𝐴 ∈ ℝ
Assertion eqlei2 ( 𝐵 = 𝐴𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 eleq1a ( 𝐴 ∈ ℝ → ( 𝐵 = 𝐴𝐵 ∈ ℝ ) )
3 1 2 ax-mp ( 𝐵 = 𝐴𝐵 ∈ ℝ )
4 eqcom ( 𝐵 = 𝐴𝐴 = 𝐵 )
5 letri3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
6 1 5 mpan ( 𝐵 ∈ ℝ → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
7 4 6 syl5bb ( 𝐵 ∈ ℝ → ( 𝐵 = 𝐴 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
8 simpr ( ( 𝐴𝐵𝐵𝐴 ) → 𝐵𝐴 )
9 7 8 syl6bi ( 𝐵 ∈ ℝ → ( 𝐵 = 𝐴𝐵𝐴 ) )
10 3 9 mpcom ( 𝐵 = 𝐴𝐵𝐴 )