Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| Assertion | eqlei2 | ⊢ ( 𝐵 = 𝐴 → 𝐵 ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | eleq1a | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 = 𝐴 → 𝐵 ∈ ℝ ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐵 = 𝐴 → 𝐵 ∈ ℝ ) |
| 4 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 5 | letri3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) | |
| 6 | 1 5 | mpan | ⊢ ( 𝐵 ∈ ℝ → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 7 | 4 6 | bitrid | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 = 𝐴 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 8 | simpr | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) | |
| 9 | 7 8 | biimtrdi | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 = 𝐴 → 𝐵 ≤ 𝐴 ) ) |
| 10 | 3 9 | mpcom | ⊢ ( 𝐵 = 𝐴 → 𝐵 ≤ 𝐴 ) |