Description: Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001)
Ref | Expression | ||
---|---|---|---|
Assertion | eqlelt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letri3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) | |
2 | lenlt | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) | |
3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
4 | 3 | anbi2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ↔ ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) ) |
5 | 1 4 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) ) |