Metamath Proof Explorer


Theorem eqlelt

Description: Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001)

Ref Expression
Assertion eqlelt ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 letri3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
2 lenlt ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
3 2 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
4 3 anbi2d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) )
5 1 4 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 < 𝐵 ) ) )