Step |
Hyp |
Ref |
Expression |
1 |
|
eqmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
eqmat.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
1 3 2
|
matbas2i |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
5 |
|
elmapfn |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑋 Fn ( 𝑁 × 𝑁 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 Fn ( 𝑁 × 𝑁 ) ) |
7 |
1 3 2
|
matbas2i |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
8 |
|
elmapfn |
⊢ ( 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑌 Fn ( 𝑁 × 𝑁 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 Fn ( 𝑁 × 𝑁 ) ) |
10 |
|
eqfnov2 |
⊢ ( ( 𝑋 Fn ( 𝑁 × 𝑁 ) ∧ 𝑌 Fn ( 𝑁 × 𝑁 ) ) → ( 𝑋 = 𝑌 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑋 𝑗 ) = ( 𝑖 𝑌 𝑗 ) ) ) |
11 |
6 9 10
|
syl2an |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑋 𝑗 ) = ( 𝑖 𝑌 𝑗 ) ) ) |