Metamath Proof Explorer


Theorem eqnegad

Description: If a complex number equals its own negative, it is zero. One-way deduction form of eqneg . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses eqnegad.1 ( 𝜑𝐴 ∈ ℂ )
eqnegad.2 ( 𝜑𝐴 = - 𝐴 )
Assertion eqnegad ( 𝜑𝐴 = 0 )

Proof

Step Hyp Ref Expression
1 eqnegad.1 ( 𝜑𝐴 ∈ ℂ )
2 eqnegad.2 ( 𝜑𝐴 = - 𝐴 )
3 1 eqnegd ( 𝜑 → ( 𝐴 = - 𝐴𝐴 = 0 ) )
4 2 3 mpbid ( 𝜑𝐴 = 0 )