Metamath Proof Explorer
Description: If a complex number equals its own negative, it is zero. One-way
deduction form of eqneg . (Contributed by David Moews, 28-Feb-2017)
|
|
Ref |
Expression |
|
Hypotheses |
eqnegad.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
eqnegad.2 |
⊢ ( 𝜑 → 𝐴 = - 𝐴 ) |
|
Assertion |
eqnegad |
⊢ ( 𝜑 → 𝐴 = 0 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqnegad.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
eqnegad.2 |
⊢ ( 𝜑 → 𝐴 = - 𝐴 ) |
| 3 |
1
|
eqnegd |
⊢ ( 𝜑 → ( 𝐴 = - 𝐴 ↔ 𝐴 = 0 ) ) |
| 4 |
2 3
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 0 ) |