Metamath Proof Explorer


Theorem eqneltrd

Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses eqneltrd.1 ( 𝜑𝐴 = 𝐵 )
eqneltrd.2 ( 𝜑 → ¬ 𝐵𝐶 )
Assertion eqneltrd ( 𝜑 → ¬ 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqneltrd.1 ( 𝜑𝐴 = 𝐵 )
2 eqneltrd.2 ( 𝜑 → ¬ 𝐵𝐶 )
3 1 eleq1d ( 𝜑 → ( 𝐴𝐶𝐵𝐶 ) )
4 2 3 mtbird ( 𝜑 → ¬ 𝐴𝐶 )