Metamath Proof Explorer
Description: If a class is not an element of another class, an equal class is also
not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
eqneltri.1 |
⊢ 𝐴 = 𝐵 |
|
|
eqneltri.2 |
⊢ ¬ 𝐵 ∈ 𝐶 |
|
Assertion |
eqneltri |
⊢ ¬ 𝐴 ∈ 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqneltri.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
eqneltri.2 |
⊢ ¬ 𝐵 ∈ 𝐶 |
3 |
1
|
eleq1i |
⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) |
4 |
2 3
|
mtbir |
⊢ ¬ 𝐴 ∈ 𝐶 |