Metamath Proof Explorer
		
		
		
		Description:  If a class is not an element of another class, an equal class is also
       not an element.  (Contributed by Glauco Siliprandi, 3-Jan-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eqneltri.1 | ⊢ 𝐴  =  𝐵 | 
					
						|  |  | eqneltri.2 | ⊢ ¬  𝐵  ∈  𝐶 | 
				
					|  | Assertion | eqneltri | ⊢  ¬  𝐴  ∈  𝐶 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqneltri.1 | ⊢ 𝐴  =  𝐵 | 
						
							| 2 |  | eqneltri.2 | ⊢ ¬  𝐵  ∈  𝐶 | 
						
							| 3 | 1 | eleq1i | ⊢ ( 𝐴  ∈  𝐶  ↔  𝐵  ∈  𝐶 ) | 
						
							| 4 | 2 3 | mtbir | ⊢ ¬  𝐴  ∈  𝐶 |