Metamath Proof Explorer


Theorem eqneltri

Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses eqneltri.1 𝐴 = 𝐵
eqneltri.2 ¬ 𝐵𝐶
Assertion eqneltri ¬ 𝐴𝐶

Proof

Step Hyp Ref Expression
1 eqneltri.1 𝐴 = 𝐵
2 eqneltri.2 ¬ 𝐵𝐶
3 1 eleq1i ( 𝐴𝐶𝐵𝐶 )
4 2 3 mtbir ¬ 𝐴𝐶