Metamath Proof Explorer


Theorem eqneltrrd

Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)

Ref Expression
Hypotheses eqneltrrd.1 ( 𝜑𝐴 = 𝐵 )
eqneltrrd.2 ( 𝜑 → ¬ 𝐴𝐶 )
Assertion eqneltrrd ( 𝜑 → ¬ 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 eqneltrrd.1 ( 𝜑𝐴 = 𝐵 )
2 eqneltrrd.2 ( 𝜑 → ¬ 𝐴𝐶 )
3 1 eqcomd ( 𝜑𝐵 = 𝐴 )
4 3 2 eqneltrd ( 𝜑 → ¬ 𝐵𝐶 )