Metamath Proof Explorer


Theorem eqneqall

Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018)

Ref Expression
Assertion eqneqall ( 𝐴 = 𝐵 → ( 𝐴𝐵𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝐴𝐵 ↔ ¬ 𝐴 = 𝐵 )
2 pm2.24 ( 𝐴 = 𝐵 → ( ¬ 𝐴 = 𝐵𝜑 ) )
3 1 2 syl5bi ( 𝐴 = 𝐵 → ( 𝐴𝐵𝜑 ) )