Metamath Proof Explorer
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018)
|
|
Ref |
Expression |
|
Assertion |
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝜑 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
2 |
|
pm2.24 |
⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐴 = 𝐵 → 𝜑 ) ) |
3 |
1 2
|
syl5bi |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝜑 ) ) |