Metamath Proof Explorer
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018)
|
|
Ref |
Expression |
|
Assertion |
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝜑 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
| 2 |
|
pm2.24 |
⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐴 = 𝐵 → 𝜑 ) ) |
| 3 |
1 2
|
biimtrid |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝜑 ) ) |