Metamath Proof Explorer
Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012) (Proof shortened by Wolf Lammen, 19-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eqnetrrid.1 |
⊢ 𝐵 = 𝐴 |
|
|
eqnetrrid.2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
|
Assertion |
eqnetrrid |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqnetrrid.1 |
⊢ 𝐵 = 𝐴 |
2 |
|
eqnetrrid.2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
3 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
4 |
3 2
|
eqnetrrd |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |