Metamath Proof Explorer


Theorem eqnetrrid

Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012) (Proof shortened by Wolf Lammen, 19-Nov-2019)

Ref Expression
Hypotheses eqnetrrid.1 𝐵 = 𝐴
eqnetrrid.2 ( 𝜑𝐵𝐶 )
Assertion eqnetrrid ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eqnetrrid.1 𝐵 = 𝐴
2 eqnetrrid.2 ( 𝜑𝐵𝐶 )
3 1 a1i ( 𝜑𝐵 = 𝐴 )
4 3 2 eqnetrrd ( 𝜑𝐴𝐶 )